

Photochemical P–O bond fission of aryl diethyl phosphates

Mitsunobu Nakamura, a,* Akihiko Ouchi, Masamichi Mikia and Tetsuro Majimac,*

by a resonant two-photon reaction

^aDepartment of Engineering Science, Himeji Institute of Technology, Shosha 2167, Himeji Hyogo 671-2201, Japan

^bNational Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan

^cThe Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan

Received 4 June 2001; revised 9 August 2001; accepted 24 August 2001

Abstract—Photochemical P-OAr bond fission of aryl diethyl phosphates was achieved via a resonant two-photon reaction using a KrF excimer laser, which gave 1,4-dihydroquinone and phenol derivatives. © 2001 Elsevier Science Ltd. All rights reserved.

A variety of one-photon reactions of phosphate esters have been reported from the mechanistic and synthetic viewpoints. We have reported that the photoreaction of 4-methoxyphenyl phosphate in methanol occurs to produce anisole and free phosphate. Obviously, O-Ar bond fission is the main process in one-photon reactions of aryl phosphates. It may be possible to observe other types of bond fission such as P-OAr bond fission from higher excited aryl phosphates with two-photon excitation, although two-photon reactions of aryl phosphates have not been reported.

It is known that the higher excited molecules generated with two-photon excitation undergo different reactions such as ionization and bond fission than the reaction of the lowest excited molecules. In addition to mechanistic studies, some synthetic applications of two-photon reactions of organic compounds have recently been reported due to improvements in laser equipment giving a high enough intensity for two-photon excitation.³

We report here that P-OAr bond homolysis of aryl diethyl phosphate 1 occurs to form 'OAr radicals via a resonant two-photon process with a high-intensity excitation at 248 nm by a KrF excimer laser, contrary to

the one-photon process where O-Ar bond fission occurs. Recently, a lot of attention has been paid to such *OAr radicals and residues ((RO)₂(O)P*) as intermediates in the actions of antioxidants and polymerization initiators, respectively.⁴

The one-pulse KrF excimer laser irradiation (100–300 mJ cm⁻²) of **1** in aerated cyclohexane (5.0×10⁻⁴ M) produced 1,4-dihydroquinone **2**, phenol derivative **3**, and side products including trace amounts of benzene and anisole (Scheme 1).^{†,‡} The conversion of **1**, chemi-

$$\begin{array}{c}
C_{2}H_{5}O \xrightarrow{2} P - O & \frac{2hv (248 \text{ nm}, 300 \text{ mJ cm}^{-2})}{C_{6}H_{12}} \\
\hline
\mathbf{a}: X = H \\
\mathbf{b}: X = OCH_{3}
\end{array}$$

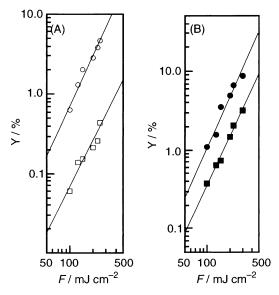
$$HO \longrightarrow OH$$
 + $HO \longrightarrow X$ + others

Scheme 1.

Keywords: resonant two-photon reaction; aryl diethyl phosphate; P-O bond fission; KrF excimer laser.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01570-2

^{*} Corresponding authors.


[†] A 50 mm³ sample solution (5.0×10⁻⁴ M) was placed in a quartz cell with a 10 mm width and 1 mm optical path. The fluence of the KrF excimer laser was controlled by means of a quartz convex lens. One pulse of the excimer laser irradiated the whole of the sample solution. The pulse energy was measured by means of a joulemeter and an oscilloscope. The pulse width (fwhm) of the excimer laser was 23 ns. The consumption of 1 and the yields of 2 and 3 were analyzed by HPLC in comparison with authentic compounds. The absorption maximums of 1a and 1b appeared at 262 nm (absorption coefficient: 408 mol⁻¹ dm³ cm⁻¹) and 279 nm (2060 mol⁻¹ dm³ cm⁻¹), respectively. The absorption coefficients of 1a and 1b at the excitation wavelength (248 nm) were 91 and 163 mol⁻¹ dm³ cm⁻¹, respectively.

[‡] The side products were unidentified except for benzene and anisole, which formed via one-photon processes of **1a** and **1b**. Since the one-photon products were yielded in trace amounts under the present experimental conditions, we did not quantitatively analyze the yields with various laser fluences

Table 1. Conversion (C) of 1, chemical yields of the products based on 1 (Y), and based on consumed 1^a

	C (%)	Y (%)	
		2	3
1a ^b	6.5	4.3 (72)	0.31 (4.7)
1a ^c	1.2	0.63 (53)	0.058 (4.8)
1a ^d	5.7	4.7 (82)	0.13 (2.2)
$1b^{b}$	14.9	5.7 (38)	3.2 (22)
1b ^c	3.7	1.4 (37)	0.56 (15)
$1b^{d}$	7.8	6.3 (81)	1.1 (14)

- ^a The yields of the products based on consumed 1 are parenthesized.
- b Irradiated with 300 mJ cm⁻² of the laser fluence in aerated cyclohexane.
- c Irradiated with 100 mJ cm⁻² of the laser fluence in aerated cyclohexane.
- $^{\rm d}$ Irradiated with 300 mJ cm $^{\rm -2}$ of the laser fluence in $\rm O_2$ saturated cyclohexane.

Figure 1. Correlation between product yields (Y) and laser fluence (F) on the laser irradiation of $\mathbf{1a}$ (A: open circle $(\mathbf{2})$, open square $(\mathbf{3a})$) and $\mathbf{1b}$ (B: closed circle $(\mathbf{2})$, closed square $(\mathbf{3b})$).

$$\begin{bmatrix} \bullet & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \\ \bullet & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \\ & 4A & & 4B & \\ \end{bmatrix} \begin{array}{c} \bigcirc & \bigcirc & \bigcirc & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Scheme 2.

1
$$\frac{hv}{C_6H_{12}}$$
 $(C_2H_5O)\frac{O}{J_2}P-OH$ + X

Scheme 3.

cal yields of the products based on 1 (Y) and based on consumed 1 are shown in Table 1. The laser irradiation of 1 in oxygen saturated cyclohexane raised the yield of 2 based on consumed 1 and suppressed the yield of 3

based on consumed 1 compared with the laser irradiation in aerated cyclohexane (Table 1).

Fig. 1 shows the yields of $\mathbf{2}$ and $\mathbf{3}$ as a function of laser fluence (F) for $\mathbf{1}$ in aerated cyclohexane. As can be seen in Fig. 1, Y increased with increasing F; the double-logarithmic plot between Y and F shows a linear correlation. The slopes were 2.06 and 1.82 for $\mathbf{2}$ and $\mathbf{3a}$, respectively, on the laser irradiation of $\mathbf{1a}$ (Fig. 1A). A similar result was obtained in the KrF laser photolysis of $\mathbf{1b}$; the slope was 2.20 for $\mathbf{2}$ and 2.01 for $\mathbf{3b}$ (Fig. 1B).§ These results indicate that $\mathbf{2}$ and $\mathbf{3}$ were formed through the two-photon absorption of $\mathbf{1}$.

The formation of the two-photon products 2 and 3 indicates that the initial photochemical process of 1 was P-OAr bond cleavage, which gave an (EtO)₂(O)P• radical and an 'OAr radical that were probably generated from 1 in a higher excited state. The generated OAr radical (4A) likely abstracted a hydrogen atom from the cyclohexane to give 3. The formation of 2 indicates the presence of a quinoid structure (4B) for the OAr radical with the radical center at the 4-carbon (cf. Scheme 2). This is supported by the fact that a PM3 calculation of the OAr radical showed high spin densities at the O and 4-C atoms. The spin densities at the O and 4-C atoms of the phenoxy radical were 0.168 and 0.338, and those of the 4-methoxyphenoxy radical were 0.146 and 0.318, respectively. The calculated spin densities of the phenoxy radical are qualitatively in agreement with values reported by another group.⁵ The final product 2 was probably generated from the peroxy radicals formed by the reaction of 4B with dissolved molecular oxygen, followed by successive hydrogen abstraction, O-O bond cleavage, and aromatization. This mechanism was supported by the results of the laser irradiation of 1 in oxygen-saturated cyclohexane.

The result of the KrF excimer laser photolysis of 1 was different from that of the conventional photolysis. Some benzene derivative and diethyl phosphate formed from the conventional photoirradiation in aerated cyclohexane; O–Ar bond dissociation occurred via a one-photon reaction (Scheme 3).

The two-photon excitation of 1 involved the first resonant π - π * excitation of the aryl group and the second excitation from the excited state (S₁, T₁, or CT state) to a higher excited 1 within a laser pulse (fwhm: 23 ns). We performed a laser flash photolysis of 1 to observe transient radicals. However, we did not observe any transient absorption in the wavelength region of 300–800 nm. This was probably due to the low absorption coefficients of the (EtO)₂(O)P* and *OAr radicals. The chemical trapping of such radicals is now under way.

[§] The filter effect of the products was negligible in the present system. This was because the absorption coefficients of the products at 248 nm were not higher than those of 1 and the double logarithmic plots between *Y* and *F* were linear in the range of 100–300 mJ cm⁻².

[¶]A 5 dm³ cyclohexane solution of 1 (1.0×10⁻³ M) was placed in a quartz tube of 10 mm diameter and irradiated using a 350 W high-pressure mercury lamp with water cooling.

In summary, we observed the first case of P-OAr bond splitting of 1 by the resonant two-photon reaction of 1, where 2 and 3 formed from 1 in a higher excited state.

Acknowledgements

This work was partly supported by the Shorai Foundation for Science and Technology and by a Grant-in-Aid for Scientific Research (Nos. 09450319, 11875187, 13305058) from Ministry of Education, Science, Sport and Culture of Japan.

References

- 1. Givens, R. S.; Kueper, L. W. Chem. Rev. 1993, 93, 55-66 and references cited therein.
- Nakamura, M.; Osako, Y.; Okamoto, Y.; Takamuku, S. Phosphorus Sulfur Silicon 1993, 85, 141–147.

- See, for example: (a) Miranda, M. A.; Font-Sanchis, E.; Pérez-Prieto, J.; Scaiano, J. C. J. Org. Chem. 1999, 64, 7842–7845; (b) Adam, W.; Schneider, K.; Stapper, M.; Steenken, S. J. Am. Chem. Soc. 1997, 119, 3280–3287; (c) Ouchi, A.; Sakuragi, M.; Kitahara, H.; Zandomeneghi, M. J. Org. Chem. 2000, 65, 2350–2357; (d) Goez, M.; Zubarev, V. J. Phys. Chem. A 1999, 103, 9605–9613; (e) Ouchi, A.; Koga, Y.; Adam, W. J. Am. Chem. Soc. 1997, 119, 592–599.
- For aryloxy radicals (*OAr), see: (a) Wright, J. S.; Carpenter, D. J.; McKay, D. J.; Ingold, K. U. J. Am. Chem. Soc. 1997, 119, 4245–4252; (b) Wayner, D. D. M.; Lusztyk, E.; Page, D.; Ingold, K. U.; Mulder, P.; Laarhoven, L. J. J. A.; Aldrich, H. S. J. Am. Chem. Soc. 1995, 117, 8737–8744. For dialkoxyphosphonyl radical ((RO)₂(O)P*), see: (c) Majima, T.; Schnabel, W. Bull. Soc. Chim. Belg. 1990, 99, 911–917; (d) Burkey, T. J.; Lusztyk, J.; Ingold, K. U.; Wan, J. K. S.; Adrian, F. J. J. Phys. Chem. 1985, 89, 4286–4291.
- Wu, Y. D.; Lai, D. K. W. J. Org. Chem. 1996, 61, 7904–7910.